GB22

Bidirectional Gear Box with two independent hands with 1° resolution per hand.

Issued	07.04.2019	dh5221
Modified	11.11.2020	fl5223
Modification No.	40041	
Released	Yes	

Hands		2
Motors		2
Jewels		0
Operating temperature		050 °C
Resistance to magnetic fields *		18.8 Oe
Shock resistance *		NIHS 91 - 10
Direction of rotation		bidirectional
Gear reduction	J1, J2	independent
Rotation angle / pulse	J1, J2	1°
Number of pulses for a complete rotation (360°)	J1, J2	360°
* By using driving methods mentioned on pages 4 a	and 5.	

Principle for the driver electronics

Motor connection no. 1			M1
Motor connection no. 2			M2
Motor connection no. 3			M3
Motor connection no. 4			M4
Coil no. 1			L1
Coil no. 2			L2
Resistance of the coil – typical	Condition	T=20 °C	1'600 Ohm
Inductance of the coil – typical	Condition	f=1 kHz	1.5 H

Recommended driving method

Nominal voltage	U _N	3.0	3.0	3.7	V
Voltage range	$oldsymbol{U_{min}}{oldsymbol{U_{max}}}$	2.80 3.20	2.20 3.50	2.90 4.50	V V
Duty cycle	PWM	100%	100%	100%	
Pulse width 4)	t_p	3.0	4.0	3.5	ms
Maximal frequency of motor steps 1), 3), 4)	f _{Step}	60	60	60	steps/ _s
Chopper frequency	f_{ch}				Hz
Current consumption (f _{Step} = 1 step/s) ^{2), 4)}	I _{mot}	4.0	6.0	6.6	μΑ
Current consumption (f _{Step} = 60 step/s) ^{2), 4)}	I _{mot}	240	360	396	μΑ
Torque ^{2), 4)}	М	50	50	80	μNm

Key:

¹⁾ Condition: $U_L = U_N$, T=20 °C

²⁾ typical

Tested maximum frequency of motor steps. Higher frequencies may be possible depending on the application.

⁴⁾ Motor driving with higher frequency: see page 7.

Recommended driving method

Motor driving in one direction

The following two examples show the motor driving pulses of 3 motor steps to drive the motor in one direction. The motor must be driven by alternating motor pulses.

Direction = clockwise (CW) Sequence of 3 motor steps

Direction = counter clockwise (CCW) Sequence of 3 motor steps

Change of direction

The following examples show the motor driving pulses for a change of direction

$CW \rightarrow CCW$

last pulse of a pulse sequence driving the motor CW (ending with a positive voltage pulse) followed by 2 pulses CCW (starting with a negative voltage pulse)

$\text{CCW} \to \text{CW}$

last pulse of a pulse sequence driving the motor CCW (ending with a positive voltage pulse) followed by 2 pulses CW (starting with a negative voltage pulse)

$CW \rightarrow CCW$

last pulse of a pulse sequence driving the motor CW (ending with a negative voltage pulse) followed by 2 pulses CCW (starting with a positive voltage pulse)

$\textbf{CCW} \rightarrow \textbf{CW}$

last pulse of a pulse sequence driving the motor CCW (ending with a negative voltage pulse) followed by 2 pulses CW (starting with a positive voltage pulse)

Example: recommended driving method

Switching states

(a) positive pulse

$$\begin{array}{lll} U_L &=& +U_N \\ U_L &=& U_{M1}-U_{M2} \end{array}$$

(b) negative pulse

$$U_L = -U_N$$

P1, N2 = open P2, N1 = closed

D = fly back diode

(c) short circuit

$$U_L = 0V$$

P1, P2 = open N1, N2 = closed

D = fly back diode

Motor driving method for higher frequency

 $t_{p1a} = 3.00 \text{ ms}$

 $t_{p1b} = 0.25 \text{ ms}$

 $t_{p1c} = 0.25 \text{ ms}$

 $t_{p2} = t_{p1b} + t_{p1c} = 0.50 \text{ ms}$

 $t_d \geq 2.50 ms$

Motor driving in one direction

The following two examples show the motor driving pulses of 3 motor steps to drive the motor in one direction. The motor must be driven by alternating motor pulses.

Direction = clockwise (CW)

Sequence of 3 motor steps

Direction = counter clockwise (CCW) Sequence of 3 motor steps

Maximal frequency of motor steps 1), 3)	f _{Step}	167	steps/ _s
Current consumption (fStep = 1 step/s) ²⁾	I _{mot}	5.0	μΑ
Current consumption (fStep = 167 step/s) ²⁾	I _{mot}	835	μΑ
Torque ²⁾	М	30	μNm

Key:

1) Condition: $U_L = U_N$, $T=20 \,^{\circ}$ C

2) typical

3) Tested maximum frequency of motor steps.