GB22

Bidirectional Gear Box with two independent hands with 1° resolution per hand.

Issued	07.04 .2019	dh5221
Modified	11.11 .2020	fl5223
Modification No.	40041	
Released	Yes	

Hands		2
Motors		2
Jewels		0
Operating temperature		$0 . .50^{\circ} \mathrm{C}$
Resistance to magnetic fields *		18.8 Oe
Shock resistance *		NIHS 91-10
Direction of rotation		bidirectional
Gear reduction	J1, J2	independent
Rotation angle / pulse	J1, J2	1°
Number of pulses for a complete rotation (360°)	J1, J2	360°
* By using driving methods mentioned on pages 4 and 5 .		

Principle for the driver electronics

Motor connection no. 1 M1

Motor connection no. 2
M2

Motor connection no. 3
M3

Motor connection no. 4

Coil no. 1
L1

Coil no. 2
L2

Resistance of the coil - typical	Condition	$\mathrm{T}=20^{\circ} \mathrm{C}$	$1^{\prime} 600 \mathrm{Ohm}$
Inductance of the coil - typical	Condition	$\mathrm{f}=1 \mathrm{kHz}$	1.5 H

Recommended driving method

Nominal voltage	U_{N}	3.0	3.0	3.7	V
Voltage range	$\begin{aligned} & \mathrm{U}_{\text {min }} \\ & \mathrm{U}_{\text {max }} \end{aligned}$	$\begin{aligned} & 2.80 \\ & 3.20 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.50 \end{aligned}$	$\begin{aligned} & 2.90 \\ & 4.50 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Duty cycle	PWM	100\%	100\%	100\%	
Pulse width ${ }^{4)}$	t_{p}	3.0	4.0	3.5	ms
Maximal frequency of motor steps ${ }^{1), 3), 4)}$	$\mathrm{f}_{\text {Step }}$	60	60	60	steps/s
Chopper frequency	f_{ch}	-- -	--	--	Hz
Current consumption ($\left.\mathrm{f}_{\text {Step }}=1 \mathrm{step} / \mathrm{s}\right)^{2), 4)}$	$I_{\text {mot }}$	4.0	6.0	6.6	$\mu \mathrm{A}$
Current consumption ($\mathrm{f}_{\text {Step }}=60$ step/s $)^{2), 4)}$	$I_{\text {mot }}$	240	360	396	$\mu \mathrm{A}$
Torque ${ }^{2), 4)}$	M	50	50	80	$\mu \mathrm{Nm}$
Key: 1) Condition: $\mathrm{U}_{\mathrm{L}}=\mathrm{U}_{\mathrm{N}}, \mathrm{T}=20^{\circ} \mathrm{C}$ ${ }^{2)}$ typical ${ }^{3)}$ Tested maximum frequency of motor steps. Higher frequencies may be possible depending on the application. ${ }^{4}$) Motor driving with higher frequency: see page 7 .					

Recommended driving method

Motor driving in one direction

The following two examples show the motor driving pulses of 3 motor steps to drive the motor in one direction. The motor must be driven by alternating motor pulses.

Direction = clockwise (CW)
 Sequence of 3 motor steps

Direction = counter clockwise (CCW) Sequence of 3 motor steps

Change of direction

The following examples show the motor driving pulses for a change of direction

CW \rightarrow CCW
last pulse of a pulse sequence driving the motor CW (ending with a positive voltage pulse) followed by 2 pulses CCW (starting with a negative voltage pulse)

CW \rightarrow CCW
last pulse of a pulse sequence driving the motor CW (ending with a negative voltage pulse) followed by 2 pulses CCW (starting with a positive voltage pulse)

CCW \rightarrow CW

last pulse of a pulse sequence driving the motor CCW (ending with a positive voltage pulse)
followed by 2 pulses CW (starting with a negative voltage pulse)

CCW \rightarrow CW
last pulse of a pulse sequence driving the motor CCW (ending with a negative voltage pulse) followed by 2 pulses CW (starting with a positive voltage pulse)

Example: recommended driving method

Switching states

(a) positive pulse
$U_{L}=+U_{N}$
$\mathrm{U}_{\mathrm{L}}=\mathrm{U}_{\mathrm{M} 1}-\mathrm{U}_{\mathrm{M} 2}$
P1, N2 = closed
P2, N1 = open
D = fly back diode
(b) negative pulse

$$
U_{\mathrm{L}}=-\mathrm{U}_{\mathrm{N}}
$$

P1, N2 = open
P2, N1 = closed
$D=$ fly back diode
(c) short circuit
$U_{L}=0 V$
P1, P2 = open
$\mathrm{N} 1, \mathrm{~N} 2=$ closed
$\mathrm{D}=$ fly back diode

Motor driving method for higher frequency

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{p} 1 \mathrm{a}}=3.00 \mathrm{~ms} \\
& \mathrm{t}_{\mathrm{p} 1 \mathrm{~b}}=0.25 \mathrm{~ms} \\
& \mathrm{t}_{\mathrm{p} 1 \mathrm{c}}=0.25 \mathrm{~ms} \\
& \mathrm{t}_{\mathrm{p} 2}=\mathrm{t}_{\mathrm{p} 1 \mathrm{~b}}+\mathrm{t}_{\mathrm{p} 1 \mathrm{c}}=0.50 \mathrm{~ms} \\
& \mathrm{t}_{\mathrm{d}} \geq 2.50 \mathrm{~ms}
\end{aligned}
$$

Motor driving in one direction

The following two examples show the motor driving pulses of 3 motor steps to drive the motor in one direction. The motor must be driven by alternating motor pulses.

Direction = clockwise (CW)
 Sequence of 3 motor steps

Direction = counter clockwise (CCW)
Sequence of 3 motor steps

Maximal frequency of motor steps ${ }^{1,3}$)	$\mathrm{f}_{\text {Step }}$	167	steps/s
Current consumption (fStep $=1 \mathrm{step} / \mathrm{s})^{2)}$	$I_{\text {mot }}$	5.0	$\mu \mathrm{A}$
Current consumption (fStep $=167$ step/s) ${ }^{2}$	$I_{\text {mot }}$	835	$\mu \mathrm{A}$
Torque ${ }^{\text {2) }}$	M	30	$\mu \mathrm{Nm}$
Key: 1) Condition: $\mathrm{U}_{\mathrm{L}}=\mathrm{U}_{\mathrm{N}}, \mathrm{T}=20^{\circ} \mathrm{C}$ 2) typical ${ }^{3}$) Tested maximum frequency of motor steps.			

